
Malware report

/Ryuk

Jorge Barelles Menes | Pablo Cardós Marqués
Aaron Jornet Sales | Javier Muñoz Alcázar

6 | 03 | 2020

pandasecurity.com/es/business/

2

Index

1. Executive report

2. Features

3. Entry vector

4. Loader

5. Ryuk

5.1 Persistence
5.2 Privileges
5.3 Injection
5.4 Encryption

6. Relevant imports and flags

7. IOC

3

6

7

9

12

12
13
15
18

24

25

pandasecurity.com/es/business/

3

1. Informe ejecutivo

Figure 1: Excerpt from El Confidencial about the Ryuk attack [1]

Figure 2: Excerpt from El País about the attack produced by Ryuk [2]

This document contains the analysis of a variant of the ransomware Ryuk, as well as the loader in
charge of loading the malware on the system.

The ransomware Ryuk first appeared in summer 2018. One of the differences between Ryuk and other
kinds of ransomware is that it mainly focuses on attacking business environments.

In mid-2019, a large number of Spanish companies were attacked by cybercriminal organizations that
made use of this kind of ransomware.

pandasecurity.com/es/business/

4

Figure 3: Illustration of Ryuk’s global activity

Ryuk has attacked a wide range of targets in a
range of countries this year. As we can see in the
following figures, the worst hit countries were
Germany, China, Algeria, and India.

Comparing the amount of cyberattacks, we can
see that Ryuk has affected millions of users,
compromising a huge quantity of data, and
creating major economic losses.

Figure 5: Number of users attacked by Ryuk in
millions

Figure 4: Top 16 countries affected worldwide
by Ryuk

pandasecurity.com/es/business/

5

Following the usual modus operandi of
ransomware, once the encryption is finished,
the sample releases a ransom note stating
that, in order to recover the encrypted files, the
victim must make a payment in Bitcoins to the
address indicated.

This malware has evolved since it first
appeared. The sample that will be analyzed in
this document was found attempting to carry
out an attack in mid-January 2020.

Because of its complexity, this malware
has often been attributed to organized
cybercriminal groups also known as APT
groups.

Part of Ryuk's code has noticeable similarities
with the code and structure of another
piece of ransomware known as Hermes, and
certain features have been reused. This is why
Ryuk was originally attributed to the North
Korean group Lazarus, which, at the time,
was suspected of being behind the Hermes
ransomware.

Subsequently, the Falcon X intelligence service,
developed by CrowdStrike, noted that Ryuk was
in fact created by the group WIZARD SPIDER
[4].

There are several clues to support this theory.
One clue is the fact that the ransomware was
advertised on the website exploit.in,which
is a known Russian malware market, and has
previously been linked to several Russian APT
groups. This fact rules out the theory that Ryuk
could have been developed by the APT group
Lazarus, since this is not representative of how
the group acts.

Moreover, Ryuk was advertised as a piece of
ransomware that wouldn't work on Russian,
Ukrainian, or Belarusian systems. This is due
to a feature detected in some versions of Ryuk,
where it checks the language of the system
where it is running and stops if the system
language is Russian, Ukrainian, or Belarusian.
Finally, during a forensic investigation of a
machine that had been compromised by the
group WIZARD SPIDER several artifacts were
found that suggested that they were involved in
the development of the Ryuk variant of Hermes.

On the other hand, the researchers Gabriela
Nicolao and Luciano Martins suggest that the
ransomware may have been developed by
the APT CryptoTech [5]. This is down to the
fact that this group posted on the forum of the
same website saying that they were behind
the development of a new version of the
ransomware Hermes, just a few months before
Ryuk first appeared.

Several forum users questioned whether
CryptoTech had really created Ryuk. However,
the group defended itself, and claimed they had
evidence that they had developed 100% of this
ransomware.

pandasecurity.com/es/business/

6

2. Features

MD5 A73130B0E379A989CBA3D695A157A495

SHA256 EF231EE1A2481B7E627921468E79BB4369CCFAEB19A575748DD2B664ABC4F469

Figure 6: Sample metadata

We are starting with a loader, whose job is to identify the system it is on so as to be able to launch the
right version of the Ryuk ransomware.

The hash of the loader is as follows:

One of the peculiarities of this loader is that it doesn't contain any metadata, that is, the creators of
this malware didn't include any information it its data.

At times they include erroneous data in order to trick the user into thinking she is running a legitimate
application. However, as we will see later, when using an infection vector where the user does not have
to interact, as is the case here, the attackers didn't think it necessary to use this technique.

The sample was compiled in 32 bits, in order to be able to run in both 32- and 64-bit
environments.

pandasecurity.com/es/business/

7

3. Entry vector

Figure 8: Blocking of the sample

The sample the drops and runs Ryuk reached our system via a remote connection gained during an
RDP attack.

The malicious user managed to log in remotely. Once logged in, he created an executable with our
sample.

 This executable was blocked by the antivirus solution before running.

Figure 7: Register of the attack

Figure 9: Blocking of the sample

pandasecurity.com/es/business/

8

Figure 10: Set of samples attacker attempted to run

Figure 11: PowerShell with malicious content blocked

Figure 12: PowerShell with malicious content blocked

When the malicious file was blocked, the intruder tried to load an encrypted version of the executable,
which was also blocked.

Lastly, he tried to load another malicious file through an encrypted PowerShell in order to bypass the
antivirus protection. This, however, was also blocked.

pandasecurity.com/es/business/

9

4. Loader

Figure 13: Ransom note

Figure 14: Executables launched by the sample

When it executes, it drops a ReadMe in %temp%,
which is typical of Ryuk. It is the ransom note,
containing an email address with a protonmail
domain, which is quite common in this malware
family: msifelabem1981@protonmail.com

During execution, you can see that it launches
several executables with random names. These are
stored in the PUBLIC directory, but hidden, so that
if "Show hidden files and folders" isn't activated
on the OS, it will stay hidden. This will be seen in
more detail in persistence. What's more, they are
64-bit, unlike the parent, which is 32-bit.

pandasecurity.com/es/business/

10

Figure 15: Execution parameters of icacls.exe launched by the sample

Figure 17: Checking OS version.

As you can see in the above image, Ryuk will launch icacls.exe, which will be used to change the ACLs
(Access control lists) in all units that we have mapped, thus guaranteeing access and modifying the
flags.

It grants full access to all users, all files on the unit (/T) regardless of errors (/C) and without showing
any messages (/Q).

It is important to bear in mind that Ryuk checks which version of Windows is being run. To do so, it
performs a version check with GetVersionExW, in which it will compare the lpVersionInformation flag,
which will indicate whether the machine where it is running is later than WindowsXP.

Depending on whether we have a version higher than Windows XP, it will drop in the local user's folder
and, as is this case, in %Public%.

pandasecurity.com/es/business/

11

The file dropped is Ryuk, and the next thing it does is to execute it by passing its own address as a parameter.

Figure 18: Execution of Ryuk via ShellExecute

The first thing Ryuk does is to obtain input parameters. This time, there are two input parameters, the
executable itself and the address of the dropper, which are used to delete traces of itself.

Figure 19: Creation of the process

You can also see that, once it has launched its executables, it deletes itself, thus leaving no trace of
itself in the folder where it executed.

Figure 20: Deleting the
file

pandasecurity.com/es/business/

12

5. RYUK

5.1 Persistence

Ryuk, like other malware, tries to stay on systems as long as possible. As seen above, one of its ways of
doing this is to create executables and launch them in secret. To do this, its most common practice is
to modify the registry key CurrentVersion\Run .

In this case, you can see that, for this purpose, the first file launched, VWjRF.exe (name generated
randomly), launches a cmd.exe.

Figure 21: Execution of VWjRF.exe

This will enter RUN with the name “svchos”. This way, if you check the registry keys at any time, it will
be easy to overlook this detail, given its similarity svchost. With this key, Ryuk ensures that it stays on
the system. If the system has not been infected by now, when you reboot the system, the executable
will try again.

Figure 22: the sample ensures persistence in the registry key

We can also see that this executable stops two services: “audioendpointbuilder”, which, as its name
suggests, corresponds to the system audio

And samss, which is the Accounts manager service. Both practices are characteristic of Ryuk. In this
case, if the system is linked to a SIEM system, it tries to stop it from sending any alerts. This way, it pro-
tects its next steps, since some SAM services may not be able to start correctly after Ryuk executes.

Figure 23: The sample stops the audio service
on the system

Figure 24: Sample stops the SamSs service

pandasecurity.com/es/business/

13

5.2 Privileges

Generally speaking, Ryuk starts with a lateral movement or is launched by another piece of malware,
such as Emotet or Trickbot, which take case of escalating privileges to grant them to the ransomware.

Beforehand, as a prelude to what will be the process injection, we see that it carries out an
ImpersonateSelf, which means that the security context access Token will be passed on to the thread
that it will immediately obtain with GetCurrentThread.

We then see that it will link the access token with the thread. We also see that one of the flags is
DesiredAccess, which can be used to control the access the thread is going to have. In this case, the
value that edx will receive should be TOKEN_ALL_ACESS, or failing that, TOKEN_WRITE.

Then, it will use SeDebugPrivilege and will make a call to grant Debug privileges to the Thread, thus
specifying the PROCESS_ALL_ACCESS, it will be able to access any process it wants to, given that it alre-
ady has the thread prepared, all that's missing is the final part.

Figure 26: Creation a thread token

Figure 25: Call to ImpersonateSelf

Figure 27: Call to SeDebugPrivilege and
privilege escalation function

pandasecurity.com/es/business/

14

On the one hand, we have LookupPrivilegeValueW, which will give us the necessary information about
the privilege we want to escalate.

On the one hand, we have AdjustTokenPrivileges, which will enable the necessary permissions on our
token. In this case, the most important is NewState, whose flag will grant the privilege.

Figure 28: Querying information about the
privilege to escalate

Figure 29: Adjusting Token Privileges

pandasecurity.com/es/business/

15

5.3 Injection

This section will show how the sample performs the injection process previously mentioned in this
report.

The main purpose of the process injection, as well as escalation, is to obtain access to Shadow Copies.
To do this, it needs to work with a thread with privileges higher than the local user's. Once it has this, it
will delete the copies and make changes to other processes in order to make it impossible to return to
an earlier point in the OS.

As is normal in this kind of malware, to perform the injection, it uses CreateToolHelp32Snapshot, so
it takes a screenshot of the processes that are currently running and will try to access the processes
listed with OpenProcess. Once it has accessed a process, it will also open a token with its information
to obtain the parameters of this process.

Figure 30: Obtaining processes from the computer

We can dynamically see how it obtains the list of processes in the subroutine 140002D9C running with
CreateToolhelp32Snapshot. Once it gets them, it goes through the list trying to open the processes one
by one with OpenProcess until it lets it. In this case, the first process that it can open is "taskhost.exe"

Figure 31: Dynamic execution of routine for obtaining process

pandasecurity.com/es/business/

16

We can see that it subsequently reads the process token information, so it calls OpenProcessToken
with the parameter "20008"

It also checks that the process that it will inject into isn't csrss.exe, explorer.exe, lsaas.exe or that it has
the privilege range of NT authority.

We can dynamically see how it first performs the check with process token information in 140002D9C
to find out whether the account whose permissions are being used to execute the process is NT
AUTHORITY.

Figure 34: NT AUTHORITY check

Figure 32: Reading the process information token

Figure 33: Excluded processes

pandasecurity.com/es/business/

17

And later, outside the routine, it checks that is is not csrss.exe, explorer.exe o lsaas.exe.

Figure 35: NT AUTHORITY check

One it has taken the screenshot of the processes and has opened the processes and checked that none
of them are those that are excluded, it is ready to write to the memory of the processes to be injected.

To do this, it first reserves memory space (VirtualAllocEx), writes on it (WriteProcessmemory) and
creates a thread (CreateRemoteThread). To operate with these functions, it uses the PIDs of the chosen
processes that it has previously obtained with CreateToolhelp32Snapshot

Here we can dynamically observe how it uses the process PID to call the VirtualAllocEx function.

Figure 37: Call to VirtualAllocEx

Figure 36: Code for injection.

pandasecurity.com/es/business/

18

5.4 Encryption

In this section, we will see the encryption part of this sample. In the following image, you can see two
subroutines called “LoadLibrary_EncodeString” and “Encode_Func”, which are responsible for carrying
out the encryption procedure.

In the first, we can see how it loads a string that will later be used to deobfuscate everything necessary:
Imports, DLLs, commands, files and the CSP.

Figure 38: Encryption routines

Figure 39: Deobfuscation chain

pandasecurity.com/es/business/

19

The following image shows the first import that it deobfuscates in the R4 register, LoadLibrary. This
will be used later to load the necessary DLLs. We can also see another sting in the R12 register, which is
used together with the previous one to perform the deobfuscation.

It continues to load the commands that it will later execute to disable backups, restore points and safe
boot modes.

Figure 41: Loading commands

It then loads the location where it will drop 3 files: Windows.bat, run.sct y start.bat.

Figure 40: Dynamic deobfuscation

pandasecurity.com/es/business/

20

These 3 files are used to check the privileges that each of the locations has. If the necessary privileges
are not available, Ryuk stops executing.

It continues to load strings corresponding to the three files. The first, DECRYPT_INFORMATION.html,
contains the information needed to recover the files. The second, PUBLIC, contains the public
RSA key.

The third, UNIQUE_ID_DO_NOT_REMOVE, contains the encrypted key that will be used in the following
subroutine to carry out the encryption.

Finally, it loads the necessary libraries together with the desired imports and the CSP
(Microsoft Enhanced RSA and AES Cryptographic Provider).

Figure 45: Loading libraries

Figure 42: File location

Figure 43: DECRYPT INFORMATION.html string

Figure 44: UNIQUE ID DO NOT REMOVE string

pandasecurity.com/es/business/

21

Once all deobfuscation has been completed, it goes on to perform the actions needed to encrypt:
listing all logical drives, execute what was loaded in the previous subroutine, performing persistence,
dropping RyukReadMe.html, encrypting, listing network devices, spreading to detected devices and
encrypting.

It starts by loading "cmd.exe" and dropping the public RSA key.

It continues, obtaining all logical drives with GetLogicalDrives and disabling all backups, restore points
and safe boot modes.

Figure 47: Deactivating restoration measures

Figure 46: Encryption Preparation

pandasecurity.com/es/business/

22

It carries on, gaining persistence as we have seen above, and dropping the first RyukReadMe.html in
TEMP.

Figure 48: Publication of ransom note

In the following image, you can see how it creates the file, loads the content and writes it:

Figure 49: Loading and writing the file content

pandasecurity.com/es/business/

23

To be able to make the same steps on all units, it uses "icacls.exe" as we have explained above.

Figure 50: Using icalcls.exe

Finally, it starts encrypting files with the exception of "*.exe", "*.dll", system files and other locations
specified in a kind of encrypted whitelist. To do this, it uses imports such as: CryptAcquireContextW
(where the use of AES and RSA is specified), CryptDeriveKey, CryptGenKey, CryptDestroyKey, etc. An
attempt is made to expand to detected network devices using WNetEnumResourceW and then encrypt
them.

Figure 51: Encryption of system files

pandasecurity.com/es/business/

24

6. Imports and relevant flags

Below is a table with the list of the most relevant imports and flags used by the sample:

lmports Flags

GetVersionExW Obtains OS version LpVersionInformation Determines if it is + than
Wxpp

lmpersonateSelf Enables privileges for a thread

GetCUrrentThread Gets handle of a thread DesiredAccess Specifies kind of access
to the Token

OpenThreadToken
Opens a token belonging to a
thread SeDebugPrivilege Used to obtain advanced

privileges

LookupPrivilegeValueW
Provides information about the
LUID to know the privilege we are
scaling

AdjustTokenPrivileges
Enables certain permissions for a
token

CreateToolHelp32Snapsh ot
Takes a screenshot of the processes
running

WriteProcessMemory
Writes in the memory of a certain
process

CreateRemoteThread Creates a threat in suspended state

ShellExecuteW
Launches a shell to execute the
payload

CommandlineToArgW
Parses a cmd command and
returns an array of pointers for the
command

DeletefileW
Deletes a files according to
parameters

CryptExportKey Exports to a crypto key

GetDriveTypeW
Finds out whether it is a USB, CD
drive...

CryptDeriveKey
Creates a key using another by
collecting past data

CryptGenKey
Generates a random session key
or an asymmetric key pair (Public/
Private)

GetlogicalDrives
Returns a bitmask of the disks.
Gives information about a disk
available on the system

WNetEnumResourceW Lists the network devices

CryptAcquireContextW
Tries to search the CSP for the
desired encryption algorithm

CryptEncrypt
Encrypts data in the algorithm that
has been designated in the CSP

CryptDecrypt
Decrypts the data encrypted by
CryptEncrypt

CryptDestroyKey
Distroys the handle of the hkey so
that it cannot be used again hkey

A handle to open the
key's registration key

CryptlmportKey Transfers a key from a CSP

pandasecurity.com/es/business/

25

7. IOC

MD5

 a73130b0e379a989cba3d695a157a495
 89a562b867979386f2c838d0f453b7d0
 99ab62a9a533f7a0541528383e35d051
 c6daf2d35e8b9adf7bce970bd762e101
 0ebc540d2f99574346ac10de3e4cf5aa
 fe7bf2e75003461b81d1260e78819928
 1bf0b9b022c7685c136439cfa8e90370
 106dd76aa34eddbabd5bc3081defed91
 ddc639cf6f8ba80221b13b6a8a0e8107
 7af8e281c798006b55f4b6bbeb771ea3
 4846fa07e96c123b807de35d076dab98
 6b99069a09bccb806b4a24f60f671157
 436d7e29ebf1a9fc92a77a266cb33f1a

References

 users\Public\run.sct
 Start Menu\Programs\Startup\start.bat
 AppData\Roaming\Microsoft\Windows\Start Menu\ProgramsStartup\start.bat

Ransom email

 msifelabem1981@protonmail.com
 sydney.wiley@protonmail.com
 MelisaPeterman@protonmail.com

Related
IP addresses

 104.136.151.73
 104.168.123.186
 104.193.252.142
 104.236.135.119
 104.236.137.72
 104.236.151.95
 104.236.161.64
 104.236.185.25

Recovery
file

 RyukReadMe.html

Encrypted file extension

 *.RYK
 *.RYUK

pandasecurity.com/es/business/

26

8. References

1. “Everis y Prisa Radio sufren un grave ciberataque que secuestra sus sistemas.” https://www.
elconfidencial.com/tecnologia/2019-11-04/ everis-la-ser-ciberataque-ransomware-15_2312019/,
Publicada el 04/11/2019.

2. “Un virus de origen ruso ataca a importantes empresas españolas.” https: //elpais.com/
tecnologia/2019/11/04/actualidad/1572897654_ 251312.html, Publicada el 04/11/2019.

3. “VB2019 paper: Shinigami’s revenge: the long tail of the Ryuk malware.” https://securelist.com/
story-of-the-year-2019-cities-under-ransomware-siege/95456/, Publicada el 11/12/2019

4. “Big Game Hunting with Ryuk: Another LucrativebTarge- ted Ransomware.” https://www.
crowdstrike.com/blog/big-game-hunting-with-ryuk-another-lucrative-targeted-ransomware/,
Publicada el 10/01/2019.

5. “VB2019 paper: Shinigami’s revenge: the long tail of the Ryuk malware.” https://www.
virusbulletin.com/virusbulletin/2019/10/ vb2019-paper-shinigamis-revenge-long-tail-r

pandasecurity.com/es/business/

27

More information
https://www.pandasecurity.com/business/

